Wavelet packets approach to blind separation of statistically dependent sources

نویسندگان

  • Ivica Kopriva
  • Damir Sersic
چکیده

Sub-band decomposition independent component analysis (SDICA) assumes that wide-band source signals can be dependent but some of their sub-components are independent. Thus, it extends applicability of standard independent component analysis (ICA) through the relaxation of the independence assumption. In this paper, firstly, we introduce novel wavelet packets (WPs) based approach to SDICA obtaining adaptive sub-band decomposition of the wideband signals. Secondly, we introduce small cumulant based approximation of the mutual information (MI) as a criterion for the selection of the sub-band with the least-dependent components. Although MI is estimated for measured signals only, we have provided a proof that shows that index of the sub-band with least dependent components of the measured signals will correspond with the index of the sub-band with least dependent components of the sources. Unlike in the case of the competing methods, we demonstrate consistent performance in terms of accuracy and robustness as well as computational efficiency of WP SDICA algorithm. r 2007 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind Source Separation via Multinode Sparse Representation

We consider a problem of blind source separation from a set of instantaneous linear mixtures, where the mixing matrix is unknown. It was discovered recently, that exploiting the sparsity of sources in an appropriate representation according to some signal dictionary, dramatically improves the quality of separation. In this work we use the property of multi scale transforms, such as wavelet or w...

متن کامل

Piecewiese linear source separation

We propose a new framework, called piecewise linear separation, for blind source separation of possibly degenerate mixtures, including the extreme case of a single mixture of several sources. Its basic principle is to : 1/ decompose the observations into “components” using some sparse decomposition/nonlinear approximation technique; 2/ perform separation on each component using a “local” separa...

متن کامل

Sparse Representation and Its Applications in Blind Source Separation

In this paper, sparse representation (factorization) of a data matrix is first discussed. An overcomplete basis matrix is estimated by using the K−means method. We have proved that for the estimated overcomplete basis matrix, the sparse solution (coefficient matrix) with minimum l−norm is unique with probability of one, which can be obtained using a linear programming algorithm. The comparisons...

متن کامل

BLIND SEPARATION OF COMPLEX−VALUED MIXTURES: SPARSE REPRESENTATION IN POLAR AND CARTESIAN SCATTER−PLOTS (MonPmOR1)

This study is concerned with reconstruction of complex−valued components comprising a linear mixing model of unknown real−valued sources, given a set of their complex−valued mixtures. We adopt previous results in the area of Blind Source Separation (BSS) of linear mixtures, based on sparse representation by means of a multiscale framework such as wavelet packets, and exploit the properties of s...

متن کامل

A Combined Wavelet Packet-blind Source Separation Approach for Identification and Removal of Muscle Artifacts from Electroencephalogram

Electromyogram (EMG) induced electrical activity is an undesirable interference in cerebral electroencephalogram (EEG) data. We propose an efficient algorithm for automatic detection and removal of EMG artifact, while preserving most of the true cerebral activity in the EEG. First, the EEG data are decomposed into independent components (IC) using canonical correlation based blind source separa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2008